

Scientists read to understand how facts, assumptions, principles, \& proofs are interrelated.

Math Skills
Solve a One-Step Equation
Solve for Accerleration A skateboarder moving at $2 \mathrm{~m} / \mathrm{s}$ starts skating down a ramp. As the skateboarder heads down the ramp, she accelerates to a speed of $6 \mathrm{~m} / \mathrm{s}$ in 4 seconds. What is the skateboarder's acceleration?

1 This is what you know:
(3) This is what you need to find out:

3 Use this formula:
4 Substitute:
the values for v_{i}, v, and t
subtract
and divice
Answer: The acceleration is $1 \mathrm{~m} / \mathrm{s}^{2}$

Practice As the skateboarder starts moving up the other side of the ramp, her velocity changes from $6 \mathrm{~m} / \mathrm{s}$ to $0 \mathrm{~m} / \mathrm{s}$ in 3 seconds. What was her acceleration?
final speed: $\quad v_{f}=6 \mathrm{~m} / \mathrm{s}$ initial speed: $v_{i}=2 \mathrm{~m} / \mathrm{s}$ time: $\quad:=4 \mathrm{~s}$
acceleration: a
$\mathrm{c}_{\mathrm{s}}=\frac{v_{t}-v_{i}}{t}$
$\frac{6 \mathrm{~m} / \mathrm{s}-2 \mathrm{~m} / \mathrm{s}}{4 \mathrm{~s}}$
$4 \mathrm{~m} / \mathrm{s}$
$=1 \mathrm{~m} / \mathrm{s}^{2}$

Remember that velocity involves both speed and direction A net force acting on an object will change its speed, direcboth your speed and direction to change

Figure 3-14
When the forces on the girl are What happens if the forces become unbalanced?

Inertia and Mass

Picture a hockey puck sliding across the ice as in Figure
3-15. Its velocity hardly changes untilit hits something, such
as the wall, the net, or a player's stick. The velocity of the puck is constant, and its accel eration is zero until it hits something that ters its speed or direction.
The sliding puck demonstrates the prop The sliding puck demonstrates the prop object to resist any change in its motion. If an object is moving, it will keep moving at the same speed and in the same direction unless an unbalanced force acts on it. In other stant unless a force changes it. If an object is trest, it tends to remain at rest. Its velocity is zero unless a force makes it move.
Would you expect that a bowling ball would have the same inertia as a tabletennis ball? Why would there be a differ greater its inertia is. Recall that mass is the

Figure 3-15
The velocity and acceleration of a hockey puck are constantly changing during a game.

It is hard to belleve, but, if you dropped a bowing ball and a marble from a bridge at the same time, they'd both splash ito the water at almost the same instant. (As you read furher, you'll find out why they don't hit the water at exactly ust about the same. Would you have expected the bowling ball to hit the water sooner because it has more mass? It's true hat the force of gravity would be greater on the bowling ball because of its larger mass. But the larger mass also gives the owling ball more inertia, so more force is needed to change velocity. The marble has a much smaller mass than the shows the falling motion of two balls revealed by high-speed photography. The blue ball is more massive than the green ne, but you can see that they fall at the same rate.
Acceleration Caused by Gravity
Near Earth's surface, gravity causes all falling obiects ccelerate at $9.8 \mathrm{~m} / \mathrm{s}^{2}$. Does the number 9.8 seem familiar? When you studied the relationship between mass and weight, ou learned that any object with a mass of 1 kg weighs 9.8 N on Earth. Now, you'll find out why.
Any force can be calculated using the equation:
$F=m \times a$.
The weight of an object, W, is the force of gravity acting on its mass. So, we can substitute and writ
$W=m \times a$.
, therefore $W=m \times 9.8 \mathrm{~m} / \mathrm{s}^{2}$
This means that a mass of 1 kg weighs $9.8 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}$, or 8 N . You could calculate your weight in newtons if you new your coass cold ample Would have a weightof 40 N
ling objects. Thi this discussion is concerned only with me height and allow to an object that is dropped from eleased, the only downward force acting. As the object is ituation changes forwnard force acting on it is gravity. The his case, the object is affected by gravity and the downward force of the throwing hand. Therefore, the object's downward acceleration would be greater than $9.8 \mathrm{~m} / \mathrm{s}^{2}$.
Figure 4-2
As the photograph shows, the rate of acceleration of a falling body is not affected by the mass of the
effect does inertia have on the falling bodies?

