

Figure 5 The velocity of an object changes if the speed chariges, the direction changes, or both the speed and the direction change.

Changing Velocity

Velacily can chamge ewen if the apeed of an quject remams comstant. Recall that velocity includes both an olject's speed ant its direction of trawel. Figure 5 shows severad examples of changing velocity.

In the forst panes, the hall drops towart the ground in a stratight tine of constant ditection. The increased lenglt al eath arrow show's that the speed of the ball imeredses as it lalls. As speed chariges, velocity changes.

In the second pantel, eath arrow is the sime lenglt. This tells you that the Ferris whete ears travel arourits a ciacle at a constamt speed. However each arrow points it a dilferent direction. This tells you that the cars are tharging direction. As direction chamges, velocity chabuges.

The third panel of Figure 5 shows the path of a ball thown into the air. The arows show that both the bald's speed and direction chamger so its velouity changes.

Whatn either an object's speed or velocity changes, the object is accelemating Acceleralton is the wedture of the chatare int

Calculating Acceleration

When a ball is dropped, as in the first 1) Figure 5, its speed incretses as it falls tol the ground. The velocity of the be thanging. Therefore, the ball is acteleti You can takulate awelaration using th lowing equation:

$$
a=\frac{v_{i}-v_{i}}{r}
$$

Math Skills $\stackrel{\hat{+}}{+}$ Solve a One Step Equation

Solve for Accerleration A skateboarder moving at $2 \mathrm{~m} / \mathrm{s}$ starts skating down a ramp. As the skateboarder heads down the ramp, she accelerates to a speed of $6 \mathrm{~m} / \mathrm{s}$ in 4 seconds. What is the skateboarder's
acceleration?

1
This is what you know:

2 This is what you need to find out:Use this formula:Substitute:
the values for $w_{i} w_{i}$ and t

$$
\frac{6 \mathrm{~m} / \mathrm{s}-2 \mathrm{~m} / \mathrm{s}}{44}
$$

subtract

$$
\begin{array}{ll}
\text { final speed: } & v_{r}=6 \mathrm{~m} / \mathrm{s} \\
\text { initial speed: } & v_{i}=20 \mathrm{w} / \mathrm{s} \\
\text { time: } & t=4 \mathrm{~s}
\end{array}
$$

$$
\frac{4 \mathrm{~m} / \mathrm{s}}{4 \mathrm{~s}}
$$

and divicte

acceleration: a

$$
d=\frac{v_{p}-v_{i}}{t}
$$

$$
=1 \mathrm{~m} / \mathrm{s}^{2}
$$

Answer: The acceleration is $1 \mathrm{~ms} \mathrm{~s}^{2}$.

Practice As the skateboarder starts moving up the other side of the ramp, her velocity changes from $6 \mathrm{~m} / \mathrm{s}$ to $0 \mathrm{~m} / \mathrm{s}$ in 3 seconds. What was her

