Apply comprehension strategies when solving word problems

Understand the mathematician's Reading \& Thinking Voices.

FIRST READ | Read for surface understanding.

Comprehend the main idea.

Decipher the message.
Every subtle mark affects comprehension.

- words	- numbers
- abbreviations	- letters
- acronyms	- icons
- symbols	- images

Acknowledge symbols have different meanings in different subject areas.

Fluently translate numbers and symbols to words.

- Decode without any phonics clues.
- Model the oral fluency.
- Require students to read aloud.

SPIN-OFF SESSION READER THINKING Session 1 | Science of Reading

Adjust to a slower reading rate.

-Word problems are dense and compact.

Grasp the context or the situation.
Identify the topic sentence versus the supporting details.

Remove the numbers.

A tank and a pail contain a total of ____ milliliters of water. Jacob pours milliliters of water from the pail into the tank. The amount of water in the tank is now \qquad times what is left in the pail. How much water was in the pail at first?

Overcome unfamiliar content.

- Add realia or other visuals to support understanding and troubleshoot a lack of background knowledge.

[^0] the number of laps Mario swam. They swam __ laps altogether. How many laps did Mario swim?

Find the story in the problem.
8. (Somebody) wanted...

Xander is unpacking books. He unpacked 4 boxes that each had 24 books. Then he unpacked 8 more books. How many books did Xander unpack?

SECRET SITE RESOURCES

Benjamin has 15 feet of ribbon to cut into $1 / 2$ foot sections for a scrapbooking project. If he needs 48 pieces of ribbon to complete the project, does he have enough ribbon?

Identify the label when determining what solving for.

SECOND READ | Zoom in on the significant information.

Annotate the relevant information.

Read with a purpose.

- Strikethrough any irrelevant information.

- Mark the key terms and note their meanings.
- Link numbers to nouns.
- Note the tasks within a multi-step word problem.
- Transform the abstract problem to a visual one.

Focus on precision and accuracy in reading.
Emphasize little words with big meaning.

the, is, a, are	how many, how, many
on, off, of, who	what, which, why
and, or	one, ones, ten, tens
do (does, did)	number, numeral
be (was, were)	can, would, should, could
it, each, all, same, some	find, solve, suppose
here, there, has, have	write, exercises

SECRET SITE RESOURCE

There are more. How many now?
How many in all?
How many altogether?
Finds
join
total
both
and

Refine the explanation of "key words."

- Teach the word's meaning applied in different contexts.

$$
\begin{aligned}
& \text { Carlos and Elizabeth } \\
& \text { go apple picking. } \\
& \text { Carlos puts } 10 \text { apples in } \\
& \text { their basket and then } \\
& \text { Elizabeth puts } 5 \text { more } \\
& \text { apples in their basket. } \\
& \text { How many apples do } \\
& \text { Carlos and Elizabeth } \\
& \text { have now? }
\end{aligned}
$$

Carlos and Elizabeth go apple picking. Carlos picks 10 apples and Elizabeth picks 5 apples. How many more apples did Carlos pick than Elizabeth?

- Maintain a list of aliases.

$$
\text { If there are five horses and } 3 \text { jockeys, how many more horses are there than jockeys? }
$$

If there are five horses and 3 jockeys, how many fewer jockeys are there than horses?
If there are five horses and 3 jockeys, how many horses won't have a jockey?
If there are five horses and 3 jockeys, what is the difference between the number of horses and jockeys?

THIRD READ | Zoom out to integrate knowledge.

Reread excerpts while solving the problem.

Introduce the mathematician's mantra.

Compare to real world.

I/ 66% of the reading done at school is technical. 78\% of the reading done in a real-world job is technical."

THE READING TEACHER JOURNAL

Revise the reading habits of your mathematicians.
Teach students the individual reading strategies within math class.

Re-establish expectations.

Explain, prove, or argue what you're doing in a written response.
-Why do/doing it? •How do/doing it? •When do/doing it? •Where do/doing it?

[^0]: Carmen swam \qquad fewer laps than

